
Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Modern Cryptography - An Introduction

Will Song

August 14, 2017

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Who am I?

• Will Song
• Competitive math nerd turned CTF player
• Intern at AIS Denver
• UIUC SIGPwny
• 1064CBread

https://www.incertia.net/
https://sigpwny.github.io/

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Topics For Today

• RSA
• Attacks on RSA and why you shouldn’t roll your own crypto
• Diffie-Hellman
• Attacks on DH and why you shouldn’t roll your own crypto
• Elliptic Curves
• Attacks on ECC and why you shouldn’t roll your own crypto
• Elliptic Curve Diffie Hellman
• Attacks on ECDH and why you shouldn’t roll your own crypto

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Prerequisites - Useful Things to Know

• ϕ is the Euler Phi function. ϕ(n) counts the positive integers a ≤ n such that
gcd(a, n) = 1

• Notice ϕ(p) = p− 1 when p is prime.
• (Euler’s Totient Theorem) If gcd(a, n) = 1, then aϕ(n) ≡ 1 (mod n).
• (Chinese Remainder Theorem) Let p, q be two positive integers such that

gcd(p, q) = 1. Then the system of modular equalities

x ≡ a (mod p)

x ≡ b (mod q)

has exactly one solution modulo pq. For the math savvy people, we say that
there is an isomorphism between Z/pZ× Z/qZ and Z/pqZ.

• (Bézout) There exist integers x, y such that ax+ by = gcd(a, b).

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Prerequisites - Useful Things to Know

• ϕ is the Euler Phi function. ϕ(n) counts the positive integers a ≤ n such that
gcd(a, n) = 1

• Notice ϕ(p) = p− 1 when p is prime.

• (Euler’s Totient Theorem) If gcd(a, n) = 1, then aϕ(n) ≡ 1 (mod n).
• (Chinese Remainder Theorem) Let p, q be two positive integers such that

gcd(p, q) = 1. Then the system of modular equalities

x ≡ a (mod p)

x ≡ b (mod q)

has exactly one solution modulo pq. For the math savvy people, we say that
there is an isomorphism between Z/pZ× Z/qZ and Z/pqZ.

• (Bézout) There exist integers x, y such that ax+ by = gcd(a, b).

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Prerequisites - Useful Things to Know

• ϕ is the Euler Phi function. ϕ(n) counts the positive integers a ≤ n such that
gcd(a, n) = 1

• Notice ϕ(p) = p− 1 when p is prime.
• (Euler’s Totient Theorem) If gcd(a, n) = 1, then aϕ(n) ≡ 1 (mod n).

• (Chinese Remainder Theorem) Let p, q be two positive integers such that
gcd(p, q) = 1. Then the system of modular equalities

x ≡ a (mod p)

x ≡ b (mod q)

has exactly one solution modulo pq. For the math savvy people, we say that
there is an isomorphism between Z/pZ× Z/qZ and Z/pqZ.

• (Bézout) There exist integers x, y such that ax+ by = gcd(a, b).

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Prerequisites - Useful Things to Know

• ϕ is the Euler Phi function. ϕ(n) counts the positive integers a ≤ n such that
gcd(a, n) = 1

• Notice ϕ(p) = p− 1 when p is prime.
• (Euler’s Totient Theorem) If gcd(a, n) = 1, then aϕ(n) ≡ 1 (mod n).
• (Chinese Remainder Theorem) Let p, q be two positive integers such that

gcd(p, q) = 1. Then the system of modular equalities

x ≡ a (mod p)

x ≡ b (mod q)

has exactly one solution modulo pq. For the math savvy people, we say that
there is an isomorphism between Z/pZ× Z/qZ and Z/pqZ.

• (Bézout) There exist integers x, y such that ax+ by = gcd(a, b).

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Prerequisites - Useful Things to Know

• ϕ is the Euler Phi function. ϕ(n) counts the positive integers a ≤ n such that
gcd(a, n) = 1

• Notice ϕ(p) = p− 1 when p is prime.
• (Euler’s Totient Theorem) If gcd(a, n) = 1, then aϕ(n) ≡ 1 (mod n).
• (Chinese Remainder Theorem) Let p, q be two positive integers such that

gcd(p, q) = 1. Then the system of modular equalities

x ≡ a (mod p)

x ≡ b (mod q)

has exactly one solution modulo pq. For the math savvy people, we say that
there is an isomorphism between Z/pZ× Z/qZ and Z/pqZ.

• (Bézout) There exist integers x, y such that ax+ by = gcd(a, b).

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

RSA

• Named after Rivest, Shamir, and Adleman.
• Probably the most widely used cryptosystem out there. See PGP/GnuPG.

• Take two primes p, q, compute N = pq.
• Pick a random number e such that gcd(e, ϕ(N)) = 1.
• Compute the number d such that de ≡ 1 (mod ϕ(N)).
• Your public key is (N, e), and your private key is d.
• To encrypt a message m, compute c ≡ me (mod N).
• To decrypt a message c, compute m ≡ cd (mod N).
• Ideally, it should be very hard to find d so we pick two very large primes such

that N is approximately 2048 bits or higher.
• Often times people will take e = 65537 = 216 + 1 to make encryption easier.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

RSA

• Named after Rivest, Shamir, and Adleman.
• Probably the most widely used cryptosystem out there. See PGP/GnuPG.
• Take two primes p, q, compute N = pq.

• Pick a random number e such that gcd(e, ϕ(N)) = 1.
• Compute the number d such that de ≡ 1 (mod ϕ(N)).
• Your public key is (N, e), and your private key is d.
• To encrypt a message m, compute c ≡ me (mod N).
• To decrypt a message c, compute m ≡ cd (mod N).
• Ideally, it should be very hard to find d so we pick two very large primes such

that N is approximately 2048 bits or higher.
• Often times people will take e = 65537 = 216 + 1 to make encryption easier.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

RSA

• Named after Rivest, Shamir, and Adleman.
• Probably the most widely used cryptosystem out there. See PGP/GnuPG.
• Take two primes p, q, compute N = pq.
• Pick a random number e such that gcd(e, ϕ(N)) = 1.

• Compute the number d such that de ≡ 1 (mod ϕ(N)).
• Your public key is (N, e), and your private key is d.
• To encrypt a message m, compute c ≡ me (mod N).
• To decrypt a message c, compute m ≡ cd (mod N).
• Ideally, it should be very hard to find d so we pick two very large primes such

that N is approximately 2048 bits or higher.
• Often times people will take e = 65537 = 216 + 1 to make encryption easier.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

RSA

• Named after Rivest, Shamir, and Adleman.
• Probably the most widely used cryptosystem out there. See PGP/GnuPG.
• Take two primes p, q, compute N = pq.
• Pick a random number e such that gcd(e, ϕ(N)) = 1.
• Compute the number d such that de ≡ 1 (mod ϕ(N)).

• Your public key is (N, e), and your private key is d.
• To encrypt a message m, compute c ≡ me (mod N).
• To decrypt a message c, compute m ≡ cd (mod N).
• Ideally, it should be very hard to find d so we pick two very large primes such

that N is approximately 2048 bits or higher.
• Often times people will take e = 65537 = 216 + 1 to make encryption easier.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

RSA

• Named after Rivest, Shamir, and Adleman.
• Probably the most widely used cryptosystem out there. See PGP/GnuPG.
• Take two primes p, q, compute N = pq.
• Pick a random number e such that gcd(e, ϕ(N)) = 1.
• Compute the number d such that de ≡ 1 (mod ϕ(N)).
• Your public key is (N, e), and your private key is d.

• To encrypt a message m, compute c ≡ me (mod N).
• To decrypt a message c, compute m ≡ cd (mod N).
• Ideally, it should be very hard to find d so we pick two very large primes such

that N is approximately 2048 bits or higher.
• Often times people will take e = 65537 = 216 + 1 to make encryption easier.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

RSA

• Named after Rivest, Shamir, and Adleman.
• Probably the most widely used cryptosystem out there. See PGP/GnuPG.
• Take two primes p, q, compute N = pq.
• Pick a random number e such that gcd(e, ϕ(N)) = 1.
• Compute the number d such that de ≡ 1 (mod ϕ(N)).
• Your public key is (N, e), and your private key is d.
• To encrypt a message m, compute c ≡ me (mod N).

• To decrypt a message c, compute m ≡ cd (mod N).
• Ideally, it should be very hard to find d so we pick two very large primes such

that N is approximately 2048 bits or higher.
• Often times people will take e = 65537 = 216 + 1 to make encryption easier.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

RSA

• Named after Rivest, Shamir, and Adleman.
• Probably the most widely used cryptosystem out there. See PGP/GnuPG.
• Take two primes p, q, compute N = pq.
• Pick a random number e such that gcd(e, ϕ(N)) = 1.
• Compute the number d such that de ≡ 1 (mod ϕ(N)).
• Your public key is (N, e), and your private key is d.
• To encrypt a message m, compute c ≡ me (mod N).
• To decrypt a message c, compute m ≡ cd (mod N).

• Ideally, it should be very hard to find d so we pick two very large primes such
that N is approximately 2048 bits or higher.

• Often times people will take e = 65537 = 216 + 1 to make encryption easier.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

RSA

• Named after Rivest, Shamir, and Adleman.
• Probably the most widely used cryptosystem out there. See PGP/GnuPG.
• Take two primes p, q, compute N = pq.
• Pick a random number e such that gcd(e, ϕ(N)) = 1.
• Compute the number d such that de ≡ 1 (mod ϕ(N)).
• Your public key is (N, e), and your private key is d.
• To encrypt a message m, compute c ≡ me (mod N).
• To decrypt a message c, compute m ≡ cd (mod N).
• Ideally, it should be very hard to find d so we pick two very large primes such

that N is approximately 2048 bits or higher.
• Often times people will take e = 65537 = 216 + 1 to make encryption easier.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

RSA - Trivial Example

• Pull up your local python interpreter so you can check that this actually
works.

• Take p = 13, q = 17, N = 221. ϕ(N) = 12 · 16 = 192.
• Take e = 5, so d = 77 (check that this works!).
• Let m = 137, so c ≡ me ≡ 154 (mod N).
• We check that decryption works by computing m ≡ cd ≡ 137 (mod N).
• Hooray!

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

RSA - Trivial Example

• Pull up your local python interpreter so you can check that this actually
works.

• Take p = 13, q = 17, N = 221. ϕ(N) = 12 · 16 = 192.

• Take e = 5, so d = 77 (check that this works!).
• Let m = 137, so c ≡ me ≡ 154 (mod N).
• We check that decryption works by computing m ≡ cd ≡ 137 (mod N).
• Hooray!

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

RSA - Trivial Example

• Pull up your local python interpreter so you can check that this actually
works.

• Take p = 13, q = 17, N = 221. ϕ(N) = 12 · 16 = 192.
• Take e = 5, so d = 77 (check that this works!).

• Let m = 137, so c ≡ me ≡ 154 (mod N).
• We check that decryption works by computing m ≡ cd ≡ 137 (mod N).
• Hooray!

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

RSA - Trivial Example

• Pull up your local python interpreter so you can check that this actually
works.

• Take p = 13, q = 17, N = 221. ϕ(N) = 12 · 16 = 192.
• Take e = 5, so d = 77 (check that this works!).
• Let m = 137, so c ≡ me ≡ 154 (mod N).

• We check that decryption works by computing m ≡ cd ≡ 137 (mod N).
• Hooray!

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

RSA - Trivial Example

• Pull up your local python interpreter so you can check that this actually
works.

• Take p = 13, q = 17, N = 221. ϕ(N) = 12 · 16 = 192.
• Take e = 5, so d = 77 (check that this works!).
• Let m = 137, so c ≡ me ≡ 154 (mod N).
• We check that decryption works by computing m ≡ cd ≡ 137 (mod N).

• Hooray!

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

RSA - Trivial Example

• Pull up your local python interpreter so you can check that this actually
works.

• Take p = 13, q = 17, N = 221. ϕ(N) = 12 · 16 = 192.
• Take e = 5, so d = 77 (check that this works!).
• Let m = 137, so c ≡ me ≡ 154 (mod N).
• We check that decryption works by computing m ≡ cd ≡ 137 (mod N).
• Hooray!

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

RSA - On Your Own

• You need PyCrypto for this.

• from Crypto.PublicKey import RSA

from Crypto.Cipher import PKCS1_OAEP

k = RSA.generate (2048)

print "(%d, %d, %d, %d, %d)" % (k.n, k.e, k.d, k.p, k.q)

print k.encrypt (1337L, 0) # bad , use Crypto.Cipher

c = PKCS1_OAEP.new(k)

print c.encrypt("asdf")

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

RSA - Pitfalls

• People who make smart cards are very smart. They store d on the card and
use the card to decrypt encrypted messages. Unfortunately, they pick d and
compute e and d is usually very small for decryption efficiency.

• (Wiener’s Attack)
e

N
has a continued fraction of the form a0 +

1

a1 + 1
a2+···

. We

check convergents xn =
kn
dn

where x1 =
1

a1
, x2 =

1

a1 + 1
a2

, . . . , and one of the dn

should be our desired d. This works for precisely d <
1

3
N

1
4 .

• (Boneh-Durfee) By choosing a specific set of polynomials, we can perform
Lenstra-Lenstra-Lovász (LLL) lattice reduction on a polynomial lattice to find a
polynomial that contains d as a small root, overall taking polynomial time. This
is possible due to a lemma by Hargrave and Graham. This works for precisely
d < N0.292, which is significantly better than Wiener’s approach.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

RSA - Pitfalls

• People who make smart cards are very smart. They store d on the card and
use the card to decrypt encrypted messages. Unfortunately, they pick d and
compute e and d is usually very small for decryption efficiency.

• (Wiener’s Attack)
e

N
has a continued fraction of the form a0 +

1

a1 + 1
a2+···

. We

check convergents xn =
kn
dn

where x1 =
1

a1
, x2 =

1

a1 + 1
a2

, . . . , and one of the dn

should be our desired d. This works for precisely d <
1

3
N

1
4 .

• (Boneh-Durfee) By choosing a specific set of polynomials, we can perform
Lenstra-Lenstra-Lovász (LLL) lattice reduction on a polynomial lattice to find a
polynomial that contains d as a small root, overall taking polynomial time. This
is possible due to a lemma by Hargrave and Graham. This works for precisely
d < N0.292, which is significantly better than Wiener’s approach.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

RSA - Pitfalls

• People who make smart cards are very smart. They store d on the card and
use the card to decrypt encrypted messages. Unfortunately, they pick d and
compute e and d is usually very small for decryption efficiency.

• (Wiener’s Attack)
e

N
has a continued fraction of the form a0 +

1

a1 + 1
a2+···

. We

check convergents xn =
kn
dn

where x1 =
1

a1
, x2 =

1

a1 + 1
a2

, . . . , and one of the dn

should be our desired d. This works for precisely d <
1

3
N

1
4 .

• (Boneh-Durfee) By choosing a specific set of polynomials, we can perform
Lenstra-Lenstra-Lovász (LLL) lattice reduction on a polynomial lattice to find a
polynomial that contains d as a small root, overall taking polynomial time. This
is possible due to a lemma by Hargrave and Graham. This works for precisely
d < N0.292, which is significantly better than Wiener’s approach.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

RSA - Pitfalls

• The broadcast issue. If an attacker obtains e different copies of your message
encrypted to e many public moduli, all with the same public exponent e, you
are screwed.

• Assume N1 < N2 < · · · < Ne. We have the following setup.

me ≡ c1 (mod N1)

me ≡ c2 (mod N2)

...

me ≡ ce (mod Ne)

If gcd(Ni, Nj) 6= 1, then we can factor either Ni or Nj and easily compute d and
thus m, so assume gcd(Ni, Nj) = 1 for all i, j. But this is CRT!!! We can

compute me (mod
∏
i

Ni), but m < N1 and
∏
i

Ni > Ne
1 > me. This means

solving CRT gives you precisely me, so we can take the e-th root and get back m.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

RSA - Pitfalls

• The broadcast issue. If an attacker obtains e different copies of your message
encrypted to e many public moduli, all with the same public exponent e, you
are screwed.

• Assume N1 < N2 < · · · < Ne. We have the following setup.

me ≡ c1 (mod N1)

me ≡ c2 (mod N2)

...

me ≡ ce (mod Ne)

If gcd(Ni, Nj) 6= 1, then we can factor either Ni or Nj and easily compute d and
thus m, so assume gcd(Ni, Nj) = 1 for all i, j. But this is CRT!!! We can

compute me (mod
∏
i

Ni), but m < N1 and
∏
i

Ni > Ne
1 > me. This means

solving CRT gives you precisely me, so we can take the e-th root and get back m.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

RSA - Pitfalls

• The broadcast issue. If an attacker obtains e different copies of your message
encrypted to e many public moduli, all with the same public exponent e, you
are screwed.

• Assume N1 < N2 < · · · < Ne. We have the following setup.

me ≡ c1 (mod N1)

me ≡ c2 (mod N2)

...

me ≡ ce (mod Ne)

If gcd(Ni, Nj) 6= 1, then we can factor either Ni or Nj and easily compute d and
thus m, so assume gcd(Ni, Nj) = 1 for all i, j. But this is CRT!!! We can

compute me (mod
∏
i

Ni), but m < N1 and
∏
i

Ni > Ne
1 > me. This means

solving CRT gives you precisely me, so we can take the e-th root and get back m.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

RSA - Pitfalls

• Size matters. If m < N
1
e
−ε, then there is a polynomial time algorithm to solve

xe − c ≡ 0 (mod N) for x and obtain m.

• (Coppersmith) Given a monic polynomial f of degree d, set X = N
1
d−ε. There

exists an efficient algorithm to find all roots x < X such that f(x) ≡ 0 (mod N).
• This uses the LLL algorithm we mentioned before.
• If m is super small, we can just take the e-th root of c and we win!

• There are many more ways of getting cheesed in RSA.
• Takeaways? Don’t roll your own crypto. Use the peer-reviewed library for

your language of choice, which will often times be NaCl/libsodium.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

RSA - Pitfalls

• Size matters. If m < N
1
e
−ε, then there is a polynomial time algorithm to solve

xe − c ≡ 0 (mod N) for x and obtain m.
• (Coppersmith) Given a monic polynomial f of degree d, set X = N

1
d−ε. There

exists an efficient algorithm to find all roots x < X such that f(x) ≡ 0 (mod N).
• This uses the LLL algorithm we mentioned before.

• If m is super small, we can just take the e-th root of c and we win!

• There are many more ways of getting cheesed in RSA.
• Takeaways? Don’t roll your own crypto. Use the peer-reviewed library for

your language of choice, which will often times be NaCl/libsodium.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

RSA - Pitfalls

• Size matters. If m < N
1
e
−ε, then there is a polynomial time algorithm to solve

xe − c ≡ 0 (mod N) for x and obtain m.
• (Coppersmith) Given a monic polynomial f of degree d, set X = N

1
d−ε. There

exists an efficient algorithm to find all roots x < X such that f(x) ≡ 0 (mod N).
• This uses the LLL algorithm we mentioned before.
• If m is super small, we can just take the e-th root of c and we win!

• There are many more ways of getting cheesed in RSA.
• Takeaways? Don’t roll your own crypto. Use the peer-reviewed library for

your language of choice, which will often times be NaCl/libsodium.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

RSA - Pitfalls

• Size matters. If m < N
1
e
−ε, then there is a polynomial time algorithm to solve

xe − c ≡ 0 (mod N) for x and obtain m.
• (Coppersmith) Given a monic polynomial f of degree d, set X = N

1
d−ε. There

exists an efficient algorithm to find all roots x < X such that f(x) ≡ 0 (mod N).
• This uses the LLL algorithm we mentioned before.
• If m is super small, we can just take the e-th root of c and we win!

• There are many more ways of getting cheesed in RSA.

• Takeaways? Don’t roll your own crypto. Use the peer-reviewed library for
your language of choice, which will often times be NaCl/libsodium.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

RSA - Pitfalls

• Size matters. If m < N
1
e
−ε, then there is a polynomial time algorithm to solve

xe − c ≡ 0 (mod N) for x and obtain m.
• (Coppersmith) Given a monic polynomial f of degree d, set X = N

1
d−ε. There

exists an efficient algorithm to find all roots x < X such that f(x) ≡ 0 (mod N).
• This uses the LLL algorithm we mentioned before.
• If m is super small, we can just take the e-th root of c and we win!

• There are many more ways of getting cheesed in RSA.
• Takeaways? Don’t roll your own crypto. Use the peer-reviewed library for

your language of choice, which will often times be NaCl/libsodium.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Diffie-Hellman - Introduction

• Everyone having a keypair is a pain in the butt. See PGP/GnuPG.

• If there is a way for two parties to agree on a shared secret, we can use
symmetric encryption instead!

• Luckily, there is a way.
• Alice and Bob agree on a prime p and some generator g.
• Alice picks secret exponent a and Bob picks secret exponent b.
• Alice sends Bob ga (mod p) and Bob sends Alice gb (mod p).
• Both parties compute k ≡ gab ≡ gba (mod p).
• Easily extendable to more than two parties.

• You can trivially MITM this, but that is beyond the scope of this talk.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Diffie-Hellman - Introduction

• Everyone having a keypair is a pain in the butt. See PGP/GnuPG.
• If there is a way for two parties to agree on a shared secret, we can use

symmetric encryption instead!

• Luckily, there is a way.
• Alice and Bob agree on a prime p and some generator g.
• Alice picks secret exponent a and Bob picks secret exponent b.
• Alice sends Bob ga (mod p) and Bob sends Alice gb (mod p).
• Both parties compute k ≡ gab ≡ gba (mod p).
• Easily extendable to more than two parties.

• You can trivially MITM this, but that is beyond the scope of this talk.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Diffie-Hellman - Introduction

• Everyone having a keypair is a pain in the butt. See PGP/GnuPG.
• If there is a way for two parties to agree on a shared secret, we can use

symmetric encryption instead!
• Luckily, there is a way.

• Alice and Bob agree on a prime p and some generator g.
• Alice picks secret exponent a and Bob picks secret exponent b.
• Alice sends Bob ga (mod p) and Bob sends Alice gb (mod p).
• Both parties compute k ≡ gab ≡ gba (mod p).
• Easily extendable to more than two parties.

• You can trivially MITM this, but that is beyond the scope of this talk.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Diffie-Hellman - Introduction

• Everyone having a keypair is a pain in the butt. See PGP/GnuPG.
• If there is a way for two parties to agree on a shared secret, we can use

symmetric encryption instead!
• Luckily, there is a way.

• Alice and Bob agree on a prime p and some generator g.
• Alice picks secret exponent a and Bob picks secret exponent b.
• Alice sends Bob ga (mod p) and Bob sends Alice gb (mod p).
• Both parties compute k ≡ gab ≡ gba (mod p).
• Easily extendable to more than two parties.

• You can trivially MITM this, but that is beyond the scope of this talk.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Diffie-Hellman - Introduction

• Everyone having a keypair is a pain in the butt. See PGP/GnuPG.
• If there is a way for two parties to agree on a shared secret, we can use

symmetric encryption instead!
• Luckily, there is a way.

• Alice and Bob agree on a prime p and some generator g.
• Alice picks secret exponent a and Bob picks secret exponent b.
• Alice sends Bob ga (mod p) and Bob sends Alice gb (mod p).
• Both parties compute k ≡ gab ≡ gba (mod p).
• Easily extendable to more than two parties.

• You can trivially MITM this, but that is beyond the scope of this talk.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Diffie-Hellman - Trivial Example

• We can check the math in our local Python interpreter.

• Let’s pick p = 101, g = 3.
• Let’s also pick a = 42, b = 69.
• Compute ga ≡ 342 ≡ 76 (mod p) and gb ≡ 369 ≡ 73 (mod p).
• Compute gab ≡ 7669 ≡ 45 (mod p) and gba ≡ 7342 ≡ 45 (mod p).

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Diffie-Hellman - Trivial Example

• We can check the math in our local Python interpreter.
• Let’s pick p = 101, g = 3.

• Let’s also pick a = 42, b = 69.
• Compute ga ≡ 342 ≡ 76 (mod p) and gb ≡ 369 ≡ 73 (mod p).
• Compute gab ≡ 7669 ≡ 45 (mod p) and gba ≡ 7342 ≡ 45 (mod p).

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Diffie-Hellman - Trivial Example

• We can check the math in our local Python interpreter.
• Let’s pick p = 101, g = 3.
• Let’s also pick a = 42, b = 69.

• Compute ga ≡ 342 ≡ 76 (mod p) and gb ≡ 369 ≡ 73 (mod p).
• Compute gab ≡ 7669 ≡ 45 (mod p) and gba ≡ 7342 ≡ 45 (mod p).

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Diffie-Hellman - Trivial Example

• We can check the math in our local Python interpreter.
• Let’s pick p = 101, g = 3.
• Let’s also pick a = 42, b = 69.
• Compute ga ≡ 342 ≡ 76 (mod p) and gb ≡ 369 ≡ 73 (mod p).

• Compute gab ≡ 7669 ≡ 45 (mod p) and gba ≡ 7342 ≡ 45 (mod p).

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Diffie-Hellman - Trivial Example

• We can check the math in our local Python interpreter.
• Let’s pick p = 101, g = 3.
• Let’s also pick a = 42, b = 69.
• Compute ga ≡ 342 ≡ 76 (mod p) and gb ≡ 369 ≡ 73 (mod p).
• Compute gab ≡ 7669 ≡ 45 (mod p) and gba ≡ 7342 ≡ 45 (mod p).

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Diffie-Hellman - Pitfalls

• Sometimes p− 1 is composed entirely of small prime factors (we say p− 1 is
smooth).

• (Pohlig-Hellman) Write p− 1 = pe11 · · · p
ek
k . Given that the pi are small and two

integers g, h modulo p, there exists an efficient algorithm to compute an x such

that gx ≡ h (mod p). Indeed, we can write gi = gn/p
ei
i , hi = hn/p

ei
i and there

exists an efficient algorithm to compute an x such that gxi
i = hi (mod peii), and

we can solve x ≡ xi (mod peii) with CRT.
• We avoid this by choosing p = 2q + 1, where p, q are both prime and q is large.

• If you’re lazy, sometimes it’s just not big enough.
• In general, Diffie-Hellman on 2n-bit p offers n bits of security.
• (Baby Step Giant Step) We store (j, gj) for 0 ≤ j ≤ √p. We can check if some

function f satisfies fk(h) = gj for some 0 ≤ k ≤ √p and j in the table and if
found, we can produce the correct x.

• Not usually a problem unless you’re too lazy to make/use a multiprecision
integer library.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Diffie-Hellman - Pitfalls

• Sometimes p− 1 is composed entirely of small prime factors (we say p− 1 is
smooth).

• (Pohlig-Hellman) Write p− 1 = pe11 · · · p
ek
k . Given that the pi are small and two

integers g, h modulo p, there exists an efficient algorithm to compute an x such

that gx ≡ h (mod p). Indeed, we can write gi = gn/p
ei
i , hi = hn/p

ei
i and there

exists an efficient algorithm to compute an x such that gxi
i = hi (mod peii), and

we can solve x ≡ xi (mod peii) with CRT.

• We avoid this by choosing p = 2q + 1, where p, q are both prime and q is large.
• If you’re lazy, sometimes it’s just not big enough.

• In general, Diffie-Hellman on 2n-bit p offers n bits of security.
• (Baby Step Giant Step) We store (j, gj) for 0 ≤ j ≤ √p. We can check if some

function f satisfies fk(h) = gj for some 0 ≤ k ≤ √p and j in the table and if
found, we can produce the correct x.

• Not usually a problem unless you’re too lazy to make/use a multiprecision
integer library.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Diffie-Hellman - Pitfalls

• Sometimes p− 1 is composed entirely of small prime factors (we say p− 1 is
smooth).

• (Pohlig-Hellman) Write p− 1 = pe11 · · · p
ek
k . Given that the pi are small and two

integers g, h modulo p, there exists an efficient algorithm to compute an x such

that gx ≡ h (mod p). Indeed, we can write gi = gn/p
ei
i , hi = hn/p

ei
i and there

exists an efficient algorithm to compute an x such that gxi
i = hi (mod peii), and

we can solve x ≡ xi (mod peii) with CRT.
• We avoid this by choosing p = 2q + 1, where p, q are both prime and q is large.

• If you’re lazy, sometimes it’s just not big enough.
• In general, Diffie-Hellman on 2n-bit p offers n bits of security.
• (Baby Step Giant Step) We store (j, gj) for 0 ≤ j ≤ √p. We can check if some

function f satisfies fk(h) = gj for some 0 ≤ k ≤ √p and j in the table and if
found, we can produce the correct x.

• Not usually a problem unless you’re too lazy to make/use a multiprecision
integer library.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Diffie-Hellman - Pitfalls

• Sometimes p− 1 is composed entirely of small prime factors (we say p− 1 is
smooth).

• (Pohlig-Hellman) Write p− 1 = pe11 · · · p
ek
k . Given that the pi are small and two

integers g, h modulo p, there exists an efficient algorithm to compute an x such

that gx ≡ h (mod p). Indeed, we can write gi = gn/p
ei
i , hi = hn/p

ei
i and there

exists an efficient algorithm to compute an x such that gxi
i = hi (mod peii), and

we can solve x ≡ xi (mod peii) with CRT.
• We avoid this by choosing p = 2q + 1, where p, q are both prime and q is large.

• If you’re lazy, sometimes it’s just not big enough.
• In general, Diffie-Hellman on 2n-bit p offers n bits of security.

• (Baby Step Giant Step) We store (j, gj) for 0 ≤ j ≤ √p. We can check if some
function f satisfies fk(h) = gj for some 0 ≤ k ≤ √p and j in the table and if
found, we can produce the correct x.

• Not usually a problem unless you’re too lazy to make/use a multiprecision
integer library.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Diffie-Hellman - Pitfalls

• Sometimes p− 1 is composed entirely of small prime factors (we say p− 1 is
smooth).

• (Pohlig-Hellman) Write p− 1 = pe11 · · · p
ek
k . Given that the pi are small and two

integers g, h modulo p, there exists an efficient algorithm to compute an x such

that gx ≡ h (mod p). Indeed, we can write gi = gn/p
ei
i , hi = hn/p

ei
i and there

exists an efficient algorithm to compute an x such that gxi
i = hi (mod peii), and

we can solve x ≡ xi (mod peii) with CRT.
• We avoid this by choosing p = 2q + 1, where p, q are both prime and q is large.

• If you’re lazy, sometimes it’s just not big enough.
• In general, Diffie-Hellman on 2n-bit p offers n bits of security.
• (Baby Step Giant Step) We store (j, gj) for 0 ≤ j ≤ √p. We can check if some

function f satisfies fk(h) = gj for some 0 ≤ k ≤ √p and j in the table and if
found, we can produce the correct x.

• Not usually a problem unless you’re too lazy to make/use a multiprecision
integer library.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Diffie-Hellman - Pitfalls

• Sometimes p− 1 is composed entirely of small prime factors (we say p− 1 is
smooth).

• (Pohlig-Hellman) Write p− 1 = pe11 · · · p
ek
k . Given that the pi are small and two

integers g, h modulo p, there exists an efficient algorithm to compute an x such

that gx ≡ h (mod p). Indeed, we can write gi = gn/p
ei
i , hi = hn/p

ei
i and there

exists an efficient algorithm to compute an x such that gxi
i = hi (mod peii), and

we can solve x ≡ xi (mod peii) with CRT.
• We avoid this by choosing p = 2q + 1, where p, q are both prime and q is large.

• If you’re lazy, sometimes it’s just not big enough.
• In general, Diffie-Hellman on 2n-bit p offers n bits of security.
• (Baby Step Giant Step) We store (j, gj) for 0 ≤ j ≤ √p. We can check if some

function f satisfies fk(h) = gj for some 0 ≤ k ≤ √p and j in the table and if
found, we can produce the correct x.

• Not usually a problem unless you’re too lazy to make/use a multiprecision
integer library.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Diffie-Hellman - Pitfalls

• Sometimes people aren’t nice.
• Occasionally the attacker will choose a g such that gx (mod p) does not have

many values, and can brute force the shared secret.

• And other ways of attacking the Discrete Log Problem if you aren’t careful.
Validate your inputs and use big enough numbers and you shouldn’t have any
problems.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Diffie-Hellman - Pitfalls

• Sometimes people aren’t nice.
• Occasionally the attacker will choose a g such that gx (mod p) does not have

many values, and can brute force the shared secret.

• And other ways of attacking the Discrete Log Problem if you aren’t careful.
Validate your inputs and use big enough numbers and you shouldn’t have any
problems.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Prerequisites - Algebra

• A group is a set G equipped with an closed associative binary operation ∗
such that

• There exists e ∈ G such that e ∗ g = g ∗ e = g for all g ∈ G.
• For each g ∈ G, there exists g−1 ∈ G such that g ∗ g−1 = g−1 ∗ g = e.

• We used groups in Diffie-Hellman. Can anyone spot what group was used?

• The p− 1 non-zero remainders modulo p under multiplication form a group
because gcd(a, p) = 1 implies the existence of integers x, y such that ax+ py = 1,
or ax ≡ 1 (mod p).

• We don’t require the group operation to commute, but when it does we say
the group is abelian, or commutative.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Prerequisites - Algebra

• A group is a set G equipped with an closed associative binary operation ∗
such that

• There exists e ∈ G such that e ∗ g = g ∗ e = g for all g ∈ G.
• For each g ∈ G, there exists g−1 ∈ G such that g ∗ g−1 = g−1 ∗ g = e.

• We used groups in Diffie-Hellman. Can anyone spot what group was used?
• The p− 1 non-zero remainders modulo p under multiplication form a group

because gcd(a, p) = 1 implies the existence of integers x, y such that ax+ py = 1,
or ax ≡ 1 (mod p).

• We don’t require the group operation to commute, but when it does we say
the group is abelian, or commutative.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Prerequisites - Algebra

• A group is a set G equipped with an closed associative binary operation ∗
such that

• There exists e ∈ G such that e ∗ g = g ∗ e = g for all g ∈ G.
• For each g ∈ G, there exists g−1 ∈ G such that g ∗ g−1 = g−1 ∗ g = e.

• We used groups in Diffie-Hellman. Can anyone spot what group was used?
• The p− 1 non-zero remainders modulo p under multiplication form a group

because gcd(a, p) = 1 implies the existence of integers x, y such that ax+ py = 1,
or ax ≡ 1 (mod p).

• We don’t require the group operation to commute, but when it does we say
the group is abelian, or commutative.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Prerequisites - Algebra

• A ring R is a set equipped with two closed associative binary operations, +
and ·, such that:

• There exists 0 ∈ R such that r + 0 = 0 + r = r for all r ∈ R.
• For each r ∈ R, there exists −r ∈ R such that r + (−r) = 0.
• There exists 1 ∈ R such that r · 1 = 1 · r = r for all r ∈ R.
• r1(r2 + r3) = r1r2 + r1r3 for all r1, r2, r3 ∈ R.

• A field F is a ring but every non-zero element f ∈ F has an inverse f−1 such
that ff−1 = f−1f = 1.

• Can anyone give any examples of rings and or fields?

• We will focus on Fp = Z/pZ, or the field/ring of numbers modulo p where p is
prime.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Prerequisites - Algebra

• A ring R is a set equipped with two closed associative binary operations, +
and ·, such that:

• There exists 0 ∈ R such that r + 0 = 0 + r = r for all r ∈ R.
• For each r ∈ R, there exists −r ∈ R such that r + (−r) = 0.
• There exists 1 ∈ R such that r · 1 = 1 · r = r for all r ∈ R.
• r1(r2 + r3) = r1r2 + r1r3 for all r1, r2, r3 ∈ R.

• A field F is a ring but every non-zero element f ∈ F has an inverse f−1 such
that ff−1 = f−1f = 1.

• Can anyone give any examples of rings and or fields?
• We will focus on Fp = Z/pZ, or the field/ring of numbers modulo p where p is

prime.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Elliptic Curves - Definition

• An elliptic curve over the field F , E(F), is defined as the set of points in
(x, y) ∈ F 2 that satisfy

y2 = x3 + ax+ b

for some a, b ∈ F .
In particular, we also want this thing to be non-singular, or some value called
the discriminant (very similar to the discriminant of a quadratic equation) to
be non-zero.

• For crypto purposes, we will use F = Fq where q = pk for some prime p, but
often times we will see q = p. In fact, I haven’t introduced what Fq for k > 1
even looks like so we won’t be seeing it yet.

• We want to turn this thing into a group. To do that, we need a picture.
• If you want to sound smart, you can also call this type of object an abelian

variety (it is a specific type of abelian variety), or a non-singular projective
cubic.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Elliptic Curves - Definition

• An elliptic curve over the field F , E(F), is defined as the set of points in
(x, y) ∈ F 2 that satisfy

y2 = x3 + ax+ b

for some a, b ∈ F .
In particular, we also want this thing to be non-singular, or some value called
the discriminant (very similar to the discriminant of a quadratic equation) to
be non-zero.

• For crypto purposes, we will use F = Fq where q = pk for some prime p, but
often times we will see q = p. In fact, I haven’t introduced what Fq for k > 1
even looks like so we won’t be seeing it yet.

• We want to turn this thing into a group. To do that, we need a picture.
• If you want to sound smart, you can also call this type of object an abelian

variety (it is a specific type of abelian variety), or a non-singular projective
cubic.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Elliptic Curves - Definition

• An elliptic curve over the field F , E(F), is defined as the set of points in
(x, y) ∈ F 2 that satisfy

y2 = x3 + ax+ b

for some a, b ∈ F .
In particular, we also want this thing to be non-singular, or some value called
the discriminant (very similar to the discriminant of a quadratic equation) to
be non-zero.

• For crypto purposes, we will use F = Fq where q = pk for some prime p, but
often times we will see q = p. In fact, I haven’t introduced what Fq for k > 1
even looks like so we won’t be seeing it yet.

• We want to turn this thing into a group. To do that, we need a picture.
• If you want to sound smart, you can also call this type of object an abelian

variety (it is a specific type of abelian variety), or a non-singular projective
cubic.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Elliptic Curves in R - The Picture

P

Q
R

P +Q

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Special Cases

• What about P + P = 2P?

• Taking the tangent line to P seems intuitive enough.
• With respect to the previous image, P +Q+R doesn’t seem to exist!

• We switch into RP2.
• Define 0 =∞.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Special Cases

• What about P + P = 2P?
• Taking the tangent line to P seems intuitive enough.

• With respect to the previous image, P +Q+R doesn’t seem to exist!
• We switch into RP2.
• Define 0 =∞.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Special Cases

• What about P + P = 2P?
• Taking the tangent line to P seems intuitive enough.

• With respect to the previous image, P +Q+R doesn’t seem to exist!
• We switch into RP2.
• Define 0 =∞.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Elliptic Curves in R - The Formulas

• The line definition works every time because algebra.

• Let P = (Px, Py), Q = (Qx, Qy).

• We can compute λ =
Py −Qy
Px −Qx

if P 6= Q and λ =
3x2 + a

2y
otherwise, as well as

(P +Q)x = λ2 − (Px +Qx)

−(P +Q)y = λ((P +Q)x − Px) + Py.

• Computing multiples n · P is easy with a method similar to exponentiation by
squaring.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Elliptic Curves in R - The Formulas

• The line definition works every time because algebra.
• Let P = (Px, Py), Q = (Qx, Qy).

• We can compute λ =
Py −Qy
Px −Qx

if P 6= Q and λ =
3x2 + a

2y
otherwise, as well as

(P +Q)x = λ2 − (Px +Qx)

−(P +Q)y = λ((P +Q)x − Px) + Py.

• Computing multiples n · P is easy with a method similar to exponentiation by
squaring.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Elliptic Curves - The Formulas

• But how do we do this in Fp?

• Notice how every non-zero element of Fp has an inverse? Yeah dividing is
multiplying by the inverse (yay high school).

• You can’t get a very good picture of this in Fp which is why we tend to draw
it in R and then just copy over the intuition.

• The math of elliptic curves is hard and you surely don’t want to do it yourself.
Use a library for it.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Elliptic Curves - The Formulas

• But how do we do this in Fp?
• Notice how every non-zero element of Fp has an inverse? Yeah dividing is

multiplying by the inverse (yay high school).
• You can’t get a very good picture of this in Fp which is why we tend to draw

it in R and then just copy over the intuition.
• The math of elliptic curves is hard and you surely don’t want to do it yourself.

Use a library for it.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Elliptic Curves - On Your Own

• You will need either SageMath or some fraction of packages that come with
Sage.

• E = EllipticCurve(GF(101) , [1, -3]) # EllipticCurve(F, [A, B])

print E.is_ordinary ()

print E.gens ()[0]. xy()

E.plot()

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Elliptic Curves - On Your Own

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Elliptic Curves - Pitfalls

• Remember the DUAL EC DRBG scandal? Here’s how the backdoor worked.
• Start with your curve E(Fp) and two public points P,Q. Let πx : E(Fp)→ Fp be

the projection onto the x-axis. Let T : Fp → Fp truncate an integer to 240 bits
(we are working with a 256 bit prime). Let f1(s) = sP, f2(s) = sQ. Let s0 be the
initial seed. We will produce seeds s1, s2, . . . and random numbers r1, r2, . . . like
so.

s0 s1 s2 · · ·

r1 r2 · · ·

πx ◦ f1 πx ◦ f1 πx ◦ f1

T
◦
π
x
◦
f
2

T
◦
π
x
◦
f
2

T
◦
π
x
◦
f
2

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Elliptic Curves - Pitfalls

• Remember the DUAL EC DRBG scandal? Here’s how the backdoor worked.
• What if you know a l such that P = lQ?
• Suppose you retrieve R = f2(s1) = s1Q. What can you do?

• We can now compute πx(lR) = πx((ls1)Q) = πx((s1l)Q) = πx(s1P) = s2 and the
PRNG is broken.

• We can do this in 216 brute force attempts (notice how the sign of y makes no
difference to the resulting x).

• Lesson? Don’t trust the NSA to not spy on you.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Elliptic Curves - Pitfalls

• Remember the DUAL EC DRBG scandal? Here’s how the backdoor worked.
• What if you know a l such that P = lQ?
• Suppose you retrieve R = f2(s1) = s1Q. What can you do?
• We can now compute πx(lR) = πx((ls1)Q) = πx((s1l)Q) = πx(s1P) = s2 and the

PRNG is broken.

• We can do this in 216 brute force attempts (notice how the sign of y makes no
difference to the resulting x).

• Lesson? Don’t trust the NSA to not spy on you.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Elliptic Curves - Pitfalls

• Remember the DUAL EC DRBG scandal? Here’s how the backdoor worked.
• What if you know a l such that P = lQ?
• Suppose you retrieve R = f2(s1) = s1Q. What can you do?
• We can now compute πx(lR) = πx((ls1)Q) = πx((s1l)Q) = πx(s1P) = s2 and the

PRNG is broken.
• We can do this in 216 brute force attempts (notice how the sign of y makes no

difference to the resulting x).

• Lesson? Don’t trust the NSA to not spy on you.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Elliptic Curves - Pitfalls

• Remember the DUAL EC DRBG scandal? Here’s how the backdoor worked.
• What if you know a l such that P = lQ?
• Suppose you retrieve R = f2(s1) = s1Q. What can you do?
• We can now compute πx(lR) = πx((ls1)Q) = πx((s1l)Q) = πx(s1P) = s2 and the

PRNG is broken.
• We can do this in 216 brute force attempts (notice how the sign of y makes no

difference to the resulting x).

• Lesson? Don’t trust the NSA to not spy on you.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Elliptic Curves - Extra

• Elliptic Curves offer similar security levels to RSA at significantly smaller key
sizes and parameters.

• Around a year ago there was a seemingly inane math question posted to
several Facebook groups that boiled down to the following.
Find integers x, y, z satisfying

x

y + z
+

y

z + x
+

z

x+ y
= 4.

I haven’t taught you why this is equivalent to an elliptic curve but if you’re
interested you can play around with it and try to find the connection. (Hint:
the smallest x, y, z are roughly 80 digits long)

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Elliptic Curve Diffie-Hellman

• Earlier we noted that we used a group for regular Diffie-Hellman. We remark
that we can do the same with elliptic curves, because they form a group!

• Alice and Bob agree on a field Fp, a curve E(Fp), and a point P .
• Alice picks a random number a and Bob picks a random number b.
• Alice sends Bob aP and Bob sends Alice bP .
• Both parties compute K = (ab)P = (ba)P .

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Elliptic Curve Diffie-Hellman - Pitfalls

• A lot of the pitfalls of regular DH carry over. If the number of points on the
curve is too small, BSGS can solve it relatively quickly. If the number of
points is smooth, we can use Pohlig-Hellman.

• We also have some new issues.
• If the curve in question has a prime number of points, there is an efficient

algorithm to solve the ECDLP.
• (Smart) We lift E(Fp) to E(Qp) over the p-adic numbers via the natural

embedding and then perform a Hensel Lift via Hensel’s Lemma to lift the two
curve points in question to E(Qp). Some math in Qp gives us the desired
exponent.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Elliptic Curve Diffie-Hellman - Pitfalls

• A lot of the pitfalls of regular DH carry over. If the number of points on the
curve is too small, BSGS can solve it relatively quickly. If the number of
points is smooth, we can use Pohlig-Hellman.

• We also have some new issues.
• If the curve in question has a prime number of points, there is an efficient

algorithm to solve the ECDLP.

• (Smart) We lift E(Fp) to E(Qp) over the p-adic numbers via the natural
embedding and then perform a Hensel Lift via Hensel’s Lemma to lift the two
curve points in question to E(Qp). Some math in Qp gives us the desired
exponent.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Elliptic Curve Diffie-Hellman - Pitfalls

• A lot of the pitfalls of regular DH carry over. If the number of points on the
curve is too small, BSGS can solve it relatively quickly. If the number of
points is smooth, we can use Pohlig-Hellman.

• We also have some new issues.
• If the curve in question has a prime number of points, there is an efficient

algorithm to solve the ECDLP.
• (Smart) We lift E(Fp) to E(Qp) over the p-adic numbers via the natural

embedding and then perform a Hensel Lift via Hensel’s Lemma to lift the two
curve points in question to E(Qp). Some math in Qp gives us the desired
exponent.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Elliptic Curve Diffie-Hellman - Pitfalls

• When you generate a random curve, you really have no idea how many points
it will have.

• More specifically, we have by a theorem of Hasse, the bound

|#E(Fp)− (p+ 1)| ≤ 2
√
p.

• To count the number of points, we use an algorithm given by Schoof and later
improved on by Elkies and Atkins. This requires yet even more math to
understand, so use a library for this.

• Let t = p+ 1−#E(Fp). We call this the trace of Frobenius of the curve E(Fp).
Given a desired trace of Frobenius t, we are able to produce curves with p+ 1± t
points via the theory of Complex Multiplication and class field theory, which is
also more math, so use a library.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Elliptic Curve Diffie-Hellman - Pitfalls

• When you generate a random curve, you really have no idea how many points
it will have.

• More specifically, we have by a theorem of Hasse, the bound

|#E(Fp)− (p+ 1)| ≤ 2
√
p.

• To count the number of points, we use an algorithm given by Schoof and later
improved on by Elkies and Atkins. This requires yet even more math to
understand, so use a library for this.

• Let t = p+ 1−#E(Fp). We call this the trace of Frobenius of the curve E(Fp).
Given a desired trace of Frobenius t, we are able to produce curves with p+ 1± t
points via the theory of Complex Multiplication and class field theory, which is
also more math, so use a library.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Elliptic Curve Diffie-Hellman - Pitfalls

• When you generate a random curve, you really have no idea how many points
it will have.

• More specifically, we have by a theorem of Hasse, the bound

|#E(Fp)− (p+ 1)| ≤ 2
√
p.

• To count the number of points, we use an algorithm given by Schoof and later
improved on by Elkies and Atkins. This requires yet even more math to
understand, so use a library for this.

• Let t = p+ 1−#E(Fp). We call this the trace of Frobenius of the curve E(Fp).
Given a desired trace of Frobenius t, we are able to produce curves with p+ 1± t
points via the theory of Complex Multiplication and class field theory, which is
also more math, so use a library.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Conclusion

• tl;dr cryptography is hard. Please don’t try to write your own library. You
will screw up some way or another.

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Resources

• picoCTF
• plaidCTF
• uiuctf
• CSAW CTF
• My Github (ctf solutions/source)
• Boneh-Durfee and Coppersmith
• SageMath
• Rational Points on Elliptic Curves (Silverman & Tate)
• Abstract Algebra (Dummit & Foote)

https://picoctf.com/
http://plaidctf.com/
https://uiuc.tf/contests/uiuctf-2017/
https://ctf.csaw.io/
https://github.com/incertia/
https://github.com/mimoo/RSA-and-LLL-attacks
http://www.sagemath.org/
https://www.amazon.com/dp/0387978259
https://www.amazon.com/dp/0471433349/

Intro RSA Diffie-Hellman Elliptic Curves ECDH Conclusion

Q & A

• Any questions? Any enthusiasm for wanting to get murdered learning the
math behind my Underhanded Crypto Challenge submission?

	Intro
	title
	whoami
	topics

	RSA
	prereqs
	rsa
	pitfalls

	Diffie-Hellman
	intro
	pitfalls

	Elliptic Curves
	prereqs
	intro
	drawing
	special
	formulas
	on your own
	pitfalls
	extra

	ECDH
	ecdh
	pitfalls

	Conclusion
	conclusions
	resource
	qa

